Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death.
نویسندگان
چکیده
PURPOSE The effect of a preferential inducer of 78 kDa glucose-regulated protein (GRP78)/immunoglobulin heavy-chain binding protein (BiP; BiP inducer X, BIX) against tunicamycin-induced cell death in RGC-5 (a rat ganglion cell line), and also against tunicamycin- or N-methyl-D-aspartate (NMDA)-induced retinal damage in mice was evaluated. METHODS In vitro, BiP mRNA was measured after BIX treatment using semi-quantitative RT-PCR or real-time PCR. The effect of BIX on tunicamycin (at 2 microg/mL)-induced damage was evaluated by measuring the cell-death rate and CHOP protein expression. In vivo, BiP protein induction was examined by immunostaining. The retinal cell damage induced by tunicamycin (1 microg) or NMDA (40 nmol) was assessed by examining ganglion cell layer (GCL) cell loss, terminal deoxyribonucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining, and CHOP protein expression. RESULTS In vitro, BIX preferentially induced BiP mRNA expression both time- and concentration-dependently in RGC-5 cells. BIX (1 and 5 microM) significantly reduced tunicamycin-induced cell death, and BIX (5 microM) significantly reduced tunicamycin-induced CHOP protein expression. In vivo, intravitreal injection of BIX (5 nmol) significantly induced BiP protein expression in the mouse retina. Co-administration of BIX (5 nmol) significantly reduced both the retinal cell death and the CHOP protein expression in GCL induced by intravitreal injection of tunicamycin or NMDA. CONCLUSIONS These findings suggest that this BiP inducer may have the potential to be a therapeutic agent for endoplasmic reticulum (ER) stress-induced retinal diseases.
منابع مشابه
The binding protein BiP attenuates stress-induced cell death in soybean via modulation of the N-rich protein-mediated signaling pathway.
The molecular chaperone binding protein (BiP) participates in the constitutive function of the endoplasmic reticulum (ER) and protects the cell against stresses. In this study, we investigated the underlying mechanism by which BiP protects plant cells from stress-induced cell death. We found that enhanced expression of BiP in soybean (Glycine max) attenuated ER stress- and osmotic stress-mediat...
متن کاملCHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system
Endoplasmic reticulum (ER) stress and protein misfolding are associated with various neurodegenerative diseases. ER stress activates unfolded protein response (UPR), an adaptative response. However, severe ER stress can induce cell death. Here we show that the E3 ubiquitin ligase and co-chaperone Carboxyl Terminus HSP70/90 Interacting Protein (CHIP) prevents neuron death in the hippocampus indu...
متن کاملMild Endoplasmic Reticulum Stress Promotes Retinal Neovascularization via Induction of BiP/GRP78
Endoplasmic reticulum (ER) stress occurs as a result of accumulation of unfolded or misfolded proteins in the ER and is involved in the mechanisms of various diseases, such as cancer and neurodegeneration. The goal of the present study was to clarify the relationship between ER stress and pathological neovascularization in the retina. Proliferation and migration of human retinal microvascular e...
متن کاملUnfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis.
Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, wherea...
متن کاملInvolvement of endoplasmic reticulum stress in all-trans-retinal-induced retinal pigment epithelium degeneration.
Excess accumulation of endogenous all-trans-retinal (atRAL) contributes to degeneration of the retinal pigment epithelium (RPE) and photoreceptor cells, and plays a role in the etiologies of age-related macular degeneration (AMD) and Stargardt's disease. In this study, we reveal that human RPE cells tolerate exposure of up to 5 µM atRAL without deleterious effects, but higher concentrations are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2009